行业资讯/

发布时间:2019-09-05 来源:贵州全务环保科技有限公司

随着城镇化进程的不断加速以及水污染问题的日益突出,我国城镇污水处理设施近十多年来持续高速建设。目前,全国共建成并投入运营4000多座城镇污水处理厂,日总污水处理规模超过2亿m3,约占全球总污水处理规模的1/5。20多万名污水处理从业人员在一线日夜运营维护,大量基层执法人员动态严格监管,对保护水环境发挥着决定性作用,他们是控制水污染的主力军。如果不建设这些设施,如果不能保障已建成的这些设施持续运营,我们的水环境状况将无法想象。

城镇污水处理设施运营可分为两个层次:一是正常稳定运营,也就是在正常工况下持续实现污水处理功能;二是可持续运营,在正常稳定运营的基础上,通过节能降耗以及资源回收利用,降低运营成本并同时降低总碳排放量。目前,一大批设施的运营既不正常也不稳定,不同程度地面临运营困境,几乎所有设施都偏离了可持续运营理念。为保障城镇污水处理厂正常高效运营,充分发挥环境效益,全行业应关注城镇污水处理厂运营困境,分析导致运营困境的原因,共同探寻解决之道。

1 城镇污水处理厂目前有哪些主要运营困境

我们调研了全国467座城镇污水处理厂5月份的运行工况,发现困扰正常稳定运营并同时干扰可持续运营的问题主要有3个:一是活性污泥问题,二是能耗高与物耗过高,三是水量超负荷与设备欠维护。这467座处理厂日总设计处理规模约4 500万m3,约占全行业总规模的1/4,覆盖了除西藏以外的全部省市和自治区。分析调研5月份的运行工况,可基本排除降水和低温等自然因素的影响。

1.1 污泥浓度过高与污泥活性太差

活性污泥是实现污水处理功能的核心。活性污泥问题体现在两个方面:浓度(mlss)太高、活性(mlvss/mlss)太差。调研发现,2/3的污水处理厂污泥浓度超过4 000 mg/l,1/3的污水处理厂超过了6 000 mg/l,有20座污水处理厂污泥浓度竟然超过了10 000 mg/l。污水处理厂在如此高浓度下运行,增大了二沉池固体负荷,使本就不足的二沉池进一步处于超负荷状态,泥水界面上升,污泥流失,堵塞深度处理单元,或直接导致出水超标。另外,为防止污泥沉积,必须增大曝气量,而增大曝气则抬高了溶解氧,干扰生物脱氮,进而影响生物除磷,出水氮和磷难以达标。一些处理厂靠大量投加化学药实现氮磷达标,使运营偏离了可持续目标。在宏观尺度上,我们可以用mlvss/mlss表征污泥活性,正常活性的污泥,mlvss/mlss应大于0.7,活性较好的污泥可超过0.8。调研发现,95%的污水处理厂污泥mlvss/mlss低于0.7,其中60%的污水处理厂污泥mlvss/mlss低于0.5,30%的污水处理厂污泥mlvss/mlss低于0.4,有27座污水处理厂污泥mlvss/mlss竟然低于0.3。如此低的污泥活性,大大降低了现有设施的污水处理能力与效果,降低了系统抗水量水质冲击的能力。为维持出水达标,不得不提高污泥浓度,从而降低了系统稳定性。另外,低mlvss/mlss还导致污泥澄清性能变差。在调研的污水处理厂中,超过一半的处理厂污泥svi值低于80 ml/g,这样的污泥对游离生物微絮体失去“网捕作用”,澄清性能变差。这些絮状物使出水感观变差,对后续过滤单元造成严重干扰。调研发现,90%以上的污水处理厂建设了深度处理设施,90%以上的这些深度处理设施设置了砂过滤单元,40%的砂滤池反冲洗水占处理量的比例超过5%,超过10%的污水处理厂反冲洗水比例大于10%,有8座污水处理厂的砂滤池反冲洗水竟然高达处理量的20%。大量反冲洗水回流到工艺前端,占用提升能力、缩短有效停留时间、增大能耗,形成恶性循环。

活性污泥浓度太高的主要原因是污泥没有稳定连续的出路,脱水污泥出不了厂,只能停止脱水或减少污泥脱水量,将大量污泥暂存在曝气池。一旦污泥临时有了出路,即使脱水机满负荷运行,也无法快速将长期积存的污泥脱水外运。污泥没有稳定出路,已经成为行业的普遍状态,是污水处理厂运营的最大困境。另外,污泥活性差也是导致污泥浓度高的原因,污泥中大部分为非活性组分,如不保持较高的污泥浓度,出水无法达标。污泥活性差的原因较为复杂,一是排水管网建设质量差、养护管理不到位,加之公众文明使用下水道意识不强,致使过多的渣砂进入管网并最终进入污水处理厂。二是污水处理厂内预处理效果不佳,许多格栅和沉砂池形同虚设,在普遍没有初沉池的情况下,大量渣砂等无机组分进入曝气池并在生物处理系统积累,致使污泥的mlvss/mlss普遍极低。另外,浓度太高和活性太差还互为原因,活性差需要提高污泥浓度,而提高污泥浓度则降低了排泥量,使无机组分(iss)更难离开系统,形成恶性循环。除了以上因素,同步化学除磷的过量加药,也成为一些污水处理厂污泥活性降低的重要原因。

1.2 能耗高与物耗过高

全行业单位水能耗与国外基本相当,但单位污染物能耗则远高于西方国家,这与我国污水处理厂进水污染物浓度偏低有关,前述活性污泥问题也是导致高电耗的重要原因。当前,为实现氮磷达标,不惜一切代价,过度投加大量化学药剂,成为污水处理厂运营的又一突出问题。为降低总氮普遍大量投加外购碳源,为降低总磷大量投加无机混凝剂,一些污水处理厂为控制污泥流失还直接往二沉池投加絮凝剂。虽未统计出准确数据,但许多污水处理厂药剂费超过电费跃升为第一大成本要素,一些水务公司的运行经营难以为继。大量药剂的投加,除大大提高了运营成本,还导致污泥产量明显增加,进一步加重了污泥处理处置的困难。污水处理本应是个污染物减量过程,但实际却变成大量物料的增加,严重偏离了可持续运营的理念和目标。

实践中,外加碳源量要满足两个需求:一是部分污水处理厂进水碳源不足,客观上需要补充碳源;二是用于消氧,消耗掉大量通过内回流带入缺氧区的溶解氧,满足反硝化要求。许多污水处理厂进水碳源并不缺乏,投加碳源只是用于消耗缺氧区过量的溶解氧。绝大部分污水处理厂缺氧区太短、反硝化时间不足,加上污泥中活性比例太低、反硝化菌群的数量也不足,综合导致反硝化效果很差,而大量投加优质碳源,可提高反硝化速率,弥补反硝化时间和反硝化菌群数量的不足。由于以上原因,大量投加外碳源就成为提高反硝化能力的一条捷径。另外,监管普遍采用瞬时取样方法,大大提高了脱氮要求,进一步增大了碳源投加量。

过量投加化学除磷药剂的主要原因是生物除磷机制的失败。当脱氮效果不佳时,外回流带回厌氧区的硝酸盐,既与聚磷菌争夺本就不足的优质碳源,也使orp难以降低到释磷的要求。另外,生物除磷需要通过排泥实现,而超高污泥浓度运行工况排泥量不足,无法获得较好的生物除磷效果。当没有生物除磷效果,全部采用化学除磷时,除磷药剂投加量将是一个很大的药量,同时产生大量化学污泥。一部分污水处理厂没有生物除磷而又采用同步化学除磷时,污泥活性将进一步降低,形成恶性循环。

1.3 水量超负荷与设备欠维护

在调研的467座城镇污水处理厂中,约2/3的水力负荷率大于80%,约1/3的大于120%,有5座污水处理厂大于150%。高水力负荷运行的污水处理厂没有运行调控余地,不能应对水量水质变化,出水超标风险增大。当水力负荷率大于80%,除少数超大型污水处理厂以外,一般污水处理厂无法在出水达标的前提下倒池停水检修,而曝气器和二沉池吸刮泥机等无备用水下设备只有泄空才能彻底检修或更换。无法进行计划性维修的设备,长期带病运行,将随时导致运营风险。调研发现,约1/2的污水处理厂曝气器超过2年没有泄空检修,约1/4的污水处理厂曝气器竟然长达6年没有泄空检修。曝气器的主要材料是三元乙丙类橡胶,这类橡胶材料的理论寿命只有4~6年,因此,这些长期不检修曝气器的污水处理厂将随时面临由于曝气器大量损坏导致的运行崩溃。与曝气器情况类似,二沉池吸刮泥机也存在长期无法泄空检修的普遍问题,一旦吸刮泥机因故障停运,二沉池将不能正常泥水分离,整个处理系统将面临崩溃。

污水水量持续增加,污水处理设施设计建设冗余度不足,以及规划的相应扩建工程不能及时建成投入运行,是水量超负荷的直接原因。有关方面认为污水处理厂不满负荷运行就会造成已建设施的浪费,事实上,高水力负荷必然导致出水水质不稳定,难以实现稳定达标。欧洲一些国家排水设施的绩效评价,水力负荷超过70%就要扣分,而我国一些地方则要求满负荷运行。在水量超负荷的情况下,几乎所有地方主管或监管部门都不允许污水处理厂停产或部分停产检修,必然导致主要设备尤其是水下无备用设备严重欠维护。水量超负荷导致运行不稳定,水下无备用设备因欠维护随时停止运行,都使运营风险大大增加。

2 解决当前困境的可能路径

2.1 突破污泥处理处置设施建设的瓶颈,补齐污泥处理处置短板

《“十三五”全国城镇污水处理及再生利用设施建设规划》提出,“十三五”期间应统筹规划,加大投入,实现城镇污水处理设施建设由“规模增长”向“提质增效”转变,由“重水轻泥”向“泥水并重”转变,到2020年底,地级及以上城市污泥无害化处置率达到90%,其他城市达到75%;县城力争达到60%。目前看,污泥处理处置设施建设状况与以上目标相距甚远。问题在哪里?瓶颈在哪里?问题在没有出路。污泥最终出路无非就是3个:一是填埋,二是焚烧,三是回到土地。污泥填埋是与垃圾争场地,随着填埋场地越来越少,填埋就成为一条死路。污泥焚烧在技术上是可行的,但邻避效应突出,难以成为主流路径。

几十年来,欧美国家将绝大部分污泥消纳到了土地,叫土地处置,也叫土地利用。污泥土地利用有3个方向:一是沙荒地改良,二是林业利用,三是农业循环利用。西方的实践中,由于运距和操作的困难,沙荒地改良和林业利用总量不多。美国年产含水率80%的污泥3 500万t,其中60%进行农业循环利用,3%用于土壤修复,17%进行填埋,20%予以焚烧。关于污泥农业循环利用,控制重金属及其化合物的含量是关键,汞和镉是两个活跃的重金属,是控制重点。1984年制定的《农用污泥污染物控制标准》(gb 4284-1984)中,污泥用于酸性土壤时,汞的限值是5 mg/kg ds,镉的限值是5 mg/kg ds;用于中性及碱性土壤时,汞的限值放宽到15 mg/kg ds,镉的限值放宽到20 mg/kg ds。在该标准生效的30多年间,《农用污泥污染物控制标准》(gb 4284-1984)一直是世界上严格的污泥农用污染物控制标准,而2018年最新发布的《农用污泥污染物控制标准》(gb 4284-2018)又进一步趋严。按照这个现有标准,污泥农业循环利用的去向被进一步堵死。填埋困难,焚烧困难,土地利用困难,污泥都去了哪里?污泥没了出路,污水处理厂如何保持正常运营?因此,有关方面应合力打通污泥农业循环利用这一主要出路,一是在政策上明确土地可以消纳污泥、应该消纳污泥,二是制定科学合理的污染物控制标准,尤其不可让标准阻碍纯粹的生活污泥进入土地,三是加速建设污泥稳定化设施,稳定化就是无害化,稳定化的污泥就可以进入土地。

2.2 找准阻碍污水处理可持续运营的根源,对症开展提升改造

管网建设标准和质量不高、排水体制混乱、清污混流、养护管理不足,致使大量无机泥渣砂进入污水处理厂,并伴随部分有机碳源流失,而污水处理流程设置又普遍无法应对这一状况,导致污水处理厂难以实现可持续运营的良性循环,从而只能被动低效应对。具体表现为:预处理单元设计建设标准过低,大量细渣细砂进入后续单元;90%以上的污水处理厂没有设置初沉池,致使无机泥渣砂直接进入了生物处理系统,导致活性污泥处于高浓度、低活性;生物脱氮工艺的缺氧区普遍太短,无法适用污水特征;用于除碳和硝化的好氧区普遍太长,既增大能耗又干扰脱氮;厌氧消化等污泥稳定化设施普遍缺失,无法在厂内实现污泥稳定并回收能源。

排水系统问题较为复杂,南北差异大,不同城市间差别也很大,需要系统深入地识别问题所在,因地制宜提出改造对策,减少无机渣砂进入管网,减少碳源的损失。必须认识到,管网改造是个复杂过程,非短时突击所能解决,既要积极推进提质增效行动方案,也要从长计议,久久为功。在污水处理厂内,首先要通过改造强化预处理效果,把渣砂等无机组分在预处理单元彻底分离出来,提高生物处理单元污泥mlvss/mlss,提升整个生物处理系统的效率,这是一个事半功倍的方案。其次,一大批污水处理厂可在系统测试的基础上把多余的好氧区改造成缺氧区,通过增大缺氧区提高脱氮效果并降低对外加碳源的依赖,进而提高生物除磷效果,降低除磷药剂的投加量。再者,应通过曝气系统的改造,提升氧的科学管理水平,既满足耗氧物质降解需求,又不因曝气过量而投加过多的碳源。对于水力负荷率超过80%,尤其是满负荷或超负荷的污水处理厂,有关方面应加快设施扩建,使污水处理厂在适宜的负荷下运行。

2.3 构建科学理性的运营监管体系,促进正常稳定的可持续运营

对污水处理厂出水水质的监管,应回归到《城镇污水处理厂污染物排放标准》(gb 18918-2002)的规定:“取样频率为至少每两小时一次,取24 h混合样,以日均值计”,不可以瞬时样作为处罚的依据。标准中的所有指标限值是以日均值为基础,如果改为瞬时样,就需要以更加严格日均值为设计和运行目标,这就变成了一个更高的标准,既不合理也不合规。以总氮为例,一级a标准要求日均值低于15 mg/l,如按瞬时样监管,则实际设计和运行目标通常需控制在10 mg/l以下,这实际就是两个不同的标准了。实际监管中,可以瞬时样作为预警,发现瞬时样超标时,可立即安排混合样取样监测,并最终以混合样为依据。另外,有机污染物、氮磷无机营养物不是毒性物质,其环境效应是累积性的,以混合样监管更为科学合理。

《城镇排水与污水处理条例》第三十一条规定:“城镇污水处理设施维护运营单位不得擅自停运城镇污水处理设施,因检修等原因需要停运或者部分停运城镇污水处理设施的,应当在90个工作日前向城镇排水主管部门、环境保护主管部门报告。”这里有两层意思:一是运营单位不得擅自停运,二是因检修等原因需要停运或者部分停运,提前3个月报告后可以停运。当污水处理厂运行负荷很高,因设施设备检修,尤其是曝气器和二沉池吸刮泥机等水下无备用设备需要例行检修时,有关部门应批准污水处理厂停运或者部分停运,以免导致更加不利的后果。

♥ 相关标签:
•相关新闻

•相关产品

网站地图